Abstract

To increase our understanding of the genes involved in flowering in citrus, we performed genome resequencing of an early flowering trifoliate orange mutant (Poncirus trifoliata L. Raf.) and its wild type. At the genome level, 3,932,628 single nucleotide polymorphisms (SNPs), 1,293,383 insertion/deletion polymorphisms (InDels), and 52,135 structural variations were identified between the mutant and its wild type based on the citrus reference genome. Based on integrative analysis of resequencing and transcriptome analysis, 233,998 SNPs and 75,836 InDels were also identified between the mutant and its wild type at the transcriptional level. Also, 272 citrus homologous flowering-time transcripts containing genetic variation were also identified. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes annotation revealed that the transcripts containing the mutant- and the wild-type-specific InDel were involved in diverse biological processes and molecular function. Among these transcripts, there were 131 transcripts that were expressed differently in the two genotypes. When 268 selected InDels were tested on 32 genotypes of the three genera of Rutaceae for the genetic diversity assessment, these InDel-based markers showed high transferability. This work provides important information that will allow a better understanding of the citrus genome and that will be helpful for dissecting the genetic basis of important traits in citrus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.