Abstract

One of the important elements for most bacterial growth is iron, the bioavailability of which is limited in hosts. Riemerella anatipestifer (R. anatipestifer, RA), an important duck pathogen, requires iron to live. However, the genes involved in iron metabolism and the mechanisms of iron transport are largely unknown. Here, we investigated the transcriptomic effects of iron limitation condition on R. anatipestifer CH-1 using the RNA-Seq and RNA-Seq-based analysis. Data analysis revealed genes encoding functions related to iron homeostasis, including a number of putative TonB-dependent receptor systems, a HmuY-like protein-dependent hemin (an iron-containing porphyrin) uptake system, a Feo system, a gene cluster related to starch utilization, and genes encoding hypothetical proteins that were significantly upregulated in response to iron limitation. Compared to the number of upregulated genes, more genes were significantly downregulated in response to iron limitation. The downregulated genes mainly encoded a number of outer membrane receptors, DNA-binding proteins, phage-related proteins, and many hypothetical proteins. This information suggested that RNA-Seq-based analysis in iron-limited medium is an effective and fast method for identifying genes involved in iron uptake in R. anatipestifer CH-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.