Abstract
Oxidation state changes under reaction conditions are very common in heterogeneous catalysis. However, due to the limitation of experiment and computational methods, the relation between oxidation state and catalytic activity is not clear. Herein, we obtain the most stable structures of palladium oxide films with different oxidation states on palladium metal surfaces using density functional theory calculations and a state-of-the-art optimization method, namely the particle swarm optimization. These structures clearly show the process of palladium oxide film formation on metallic surfaces. Using CO oxidation as a model reaction, we find that the activities increase first and then decrease with the increase of oxidation states, peaking at Pd4O3. Our findings offer an understanding of the phase transformation and the activity of non-stoichiometric phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.