Abstract

West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk.

Highlights

  • West Nile virus (WNV) is a multi-host mosquito borne virus belonging to the Japanese encephalitis (JE) antigenic complex [1]

  • Data used were provided by the European Centre for Disease Prevention and Control (ECDC), [36], compiled from weekly West Nile fever (WNF) case reports from 146 areas defined at the Nomenclature of Territorial Units level 3 (NUTS3)/Global Administrative Unit Layers level 1 (GAUL1), originating from 16 different countries across western Asia, Europe and northern Africa (Fig. 1)

  • West Nile virus is spreading in Europe and neighbouring countries at an increasing rate, with new lineages and variants emerging into new territories

Read more

Summary

Introduction

West Nile virus (WNV) is a multi-host mosquito borne virus belonging to the Japanese encephalitis (JE) antigenic complex (genus Flavivirus, family Flaviridae) [1]. The majority (*80%) of human WNV infections are sub-clinical and can pass unnoticed, some 20% of patients experience flu-like symptoms known as West Nile fever (WNF), while approximately 1% develop a severe, and potentially fatal, neuro-invasive disease [2]. While clinical trials for human vaccines are underway [3] prevention currently depends on organized, sustained vector (mosquito) control campaigns and risk communication [4,5,6,7,8]. Environmental Conditions Favouring West Nile Virus Outbreaks in Europe design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.