Abstract

Breast cancer heterogeneity contributes to chemotherapy resistance and decreased patient survival. To improve patient outcomes it is essential to develop a technology that is able to rapidly select the most efficacious therapy that targets the diverse phenotypes present within the tumor. Breast cancer organoid technologies are proposed as an attractive approach for evaluating drug responses prior to patient therapy. However, there remain challenges in evaluating the effectiveness of organoid cultures to recapitulate the heterogeneity present in the patient tumor in situ. Organoids were generated from seven normal breast and nineteen breast cancer tissues diagnosed as estrogen receptor positive or triple negative. The Jensen-Shannon divergence index, a measure of the similarity between distributions, was used to compare and evaluate heterogeneity in starting tissue and their resultant organoids. Heterogeneity was analyzed using cytokeratin 8 and cytokeratin 14, which provided an easily scored readout. In the in vitro culture system HER1 and FGFR were able to drive intra-tumor heterogeneity to generate divergent phenotypes that have different sensitivities to chemotherapies. Our methodology, which focuses on quantifiable cellular phenotypes, provides a tractable system that complements omics approaches to provide an unprecedented view of heterogeneity and will enhance the identification of novel therapies and facilitate personalized medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.