Abstract

The doping of Al into layered Li transition metal (TM) oxide cathode materials, LiTMO2, is known to improve the structural and thermal stability, although the origin of the enhanced properties is not well understood. The effect of aluminum doping on layer stabilization has been investigated using a combination of techniques to measure the aluminum distribution in layered LiNi0.8Co0.15Al0.05O2 (NCA) over multiple length scales with 27Al and 7Li MAS NMR, local electrode atom probe (APT) tomography, X-ray and neutron diffraction, DFT, and SQUID magnetic susceptibility measurements. APT ion maps show a homogeneous distribution of Ni, Co, Al, and O2 throughout the structure at the single particle level in agreement with the high-temperature phase diagram. 7Li and 27Al NMR indicates that the Ni3+ ions undergo a dynamic Jahn–Teller (JT) distortion. 27Al NMR spectra indicate that the Al reduces the strain associated with the JT distortion, by preferential electronic ordering of the JT lengthened bonds directed to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.