Abstract

The use of cross-tie is one of the effective countermeasures to suppress the undesired cable vibration in the cable-stayed bridges. The major benefits offered by the cross-tie solution are the increase in the in-plane stiffness and the flow of energy toward the higher order nodes. However, the formation of closely spaced local modes is one of the major disadvantages of the Cross-tied cable networks. There are only few studies available to understand the formation of local modes. In the current study, an energy-based approach is developed to differentiate between the global and the local modes. In the proposed approach, the kinetic energy equations are formulated to compute the energy stored in arbitrary cable segments. In the current study, the advantages of the proposed energy-based approach over the existing amplitude-based approach have been discussed. The suggested approach has been applied to multiple cable networks, and a comparison has been drawn between the amplitude-based approach and the proposed energy-based approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.