Abstract
The chemical structure of lignin, a complex, irregular polymer of phenylpropane units that occurs in plant cell walls, was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The positive ToF-SIMS spectra of lignin isolated from pine and beech wood showed prominent secondary ions possessing guaiacyl (at m/z 137 and 151) or syringyl (at m/z 167 and 181) rings, which are the basic building units of lignin polymer. This shows that ToF-SIMS is a useful tool for lignin structural analysis. The peaks at m/z 137 and 167 were assigned as the C6-C1 ion, and the peaks at m/z 151 and 181 may be double-component, the C6-C1 ion and the C6-C2 ion. We confirmed the characteristic guaiacyl ions using a synthetic lignin model compound, dehydrogenation polymer (DHP), which was formed by polymerizing of unlabeled and deuterium-labeled coniferyl alcohols. The formation mechanism of the main secondary ions was deduced by labeling specific positions of coniferyl alcohols with a stable isotope to study the relationship between chemical structure and secondary ion formation in ToF-SIMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.