Abstract

Background'Kuerlexiangli’ (Pyrus sinkiangensis Yu), a native pear of Xinjiang, China, is an important agricultural fruit and primary export to the international market. However, fruit with persistent calyxes affect fruit shape and quality. Although several studies have looked into the physiological aspects of the calyx abscission process, the underlying molecular mechanisms remain unknown. In order to better understand the molecular basis of the process of calyx abscission, materials at three critical stages of regulation, with 6000 × Flusilazole plus 300 × PBO treatment (calyx abscising treatment) and 50 mg.L-1GA3 treatment (calyx persisting treatment), were collected and cDNA fragments were sequenced using digital transcript abundance measurements to identify candidate genes.ResultsDigital transcript abundance measurements was performed using high-throughput Illumina GAII sequencing on seven samples that were collected at three important stages of the calyx abscission process with chemical agent treatments promoting calyx abscission and persistence. Altogether more than 251,123,845 high quality reads were obtained with approximately 8.0 M raw data for each library. The values of 69.85%-71.90% of clean data in the digital transcript abundance measurements could be mapped to the pear genome database. There were 12,054 differentially expressed genes having Gene Ontology (GO) terms and associating with 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. The differentially expressed genes correlated with calyx abscission were mainly involved in photosynthesis, plant hormone signal transduction, cell wall modification, transcriptional regulation, and carbohydrate metabolism. Furthermore, candidate calyx abscission-specific genes, e.g. Inflorescence deficient in abscission gene, were identified. Quantitative real-time PCR was used to confirm the digital transcript abundance measurements results.ConclusionsWe identified candidate genes that showed highly dynamic changes in expression during the calyx abscission process. These genes are potential targets for future functional characterization and should be valuable for exploration of the mechanisms of calyx abscission, and eventually for developing methods based on small molecule application to induce calyx abscission in fruit production.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-727) contains supplementary material, which is available to authorized users.

Highlights

  • The ‘Kuerlexiangli’ pear is one of the characteristic and economically important fruit trees in Xinjiang Uygur Autonomous Region, China

  • Digital transcript abundance measurements libraries sequencing Illumina sequencing analysis was performed to obtain a global view of the calyx abscission of ‘Kuerlexiangli’ through analysis of the transcriptomes of Flusilazole treatment and GA3 treatment

  • The present results have demonstrated the usefulness of the digital transcript abundance measurements approach to identify differentially expressed genes between Flusilazole treatment and GA3 treatment

Read more

Summary

Introduction

The ‘Kuerlexiangli’ pear is one of the characteristic and economically important fruit trees in Xinjiang Uygur Autonomous Region, China. Fruit of this cultivar is a rich source of juice and has few stone cells, good flavor, and tantalizing aroma. A persistent calyx seriously affects the fruit shape (Additional file 1) as well as quality. Calyx persistence significantly affects the commercial importance of ‘Kuerlexiangli’ and causes serious loss in economic value. The rate of calyx abscission in ‘Kuerlexiangli’ fruit is varied among different pollinizer varieties, with higher calyx abscission rates obtained when flowers were pollinated with ‘Xueqing’, ‘Yali’, ‘Zhongliyihao’ and ‘Cuiguan’ pear [4]. Manually excising the calyx was helpful for enhancing the comprehensive quality of pear fruit [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.