Abstract

Time-averaged serum albumin (TSA) is commonly associated with clinical outcomes in hemodialysis (HD) patients and considered as a surrogate indicator of nutritional status. The whale optimization algorithm-based feature selection (WOFS) model could address the complex association between the clinical factors, and could further combine with regression models for application. The present study aimed to demonstrate an optimal multifactor TSA-associated model, in order to interpret the complex association between TSA and clinical factors among HD patients. A total of 829 HD patients who met the inclusion criteria were selected for analysis. Monthly serum albumin data tracked from January 2009 to December 2013 were converted into TSA categories based on a critical value of 3.5 g/dL. Multivariate logistic regression was used to analyze the association between TSA categories and multiple clinical factors using three types of feature selection models, namely the fully adjusted, stepwise, and WOFS models. Five features, albumin, age, creatinine, potassium, and HD adequacy index (Kt/V level), were selected from fifteen clinical factors by the WOFS model, which is the minimum number of selected features required in multivariate regression models for optimal multifactor model construction. The WOFS model yielded the lowest Akaike information criterion (AIC) value, which indicated that the WOFS model could achieve superior performance in the multifactor analysis of TSA for HD patients. In conclusion, the application of the optimal multifactor TSA-associated model could facilitate nutritional status monitoring in HD patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.