Abstract

AbstractAimLakes in the Ecuadorean Andes span different altitudinal and climatic regions, from inter Andean plateau to the high‐elevation páramo, which differ in their historical evolution in the several centuries since the pioneering Humboldt expeditions. Here, we evaluate temporal and spatial patterns of change in diatom assemblages between historical (palaeolimnological) and modern times.LocationEcuadorean AndesMethodsWe compared historical (pre‐1850) and modern (2017) diatom assemblages from 21 lakes and determined the relative role of environmental (water chemistry and climate) and spatial factors (distance‐based Moran's eigenvectors maps) on both assemblages using non‐metric multidimensional scaling (NMDS) with environmental fitting. In addition, we used redundancy analysis (RDA) with variance partitioning to estimate the historical (measured using downcore assemblage composition) effects on modern diatom assemblages and identified diatom species that contributed most to dissimilarity between the two times.ResultsDiatom changes between the two time points were limited across the group of lakes, as indicated by the NMDS ordination. Variance partitioning indicated that modern diatom assemblages were affected by environmental and spatial effects, but with non‐significant effects of past diatom species composition. Ordination results showed that variables related to elevation and water chemistry affected both modern and historical diatom assemblages. Diatom species with the best fit on NMDS axes (i.e. >70%) were influenced by elevation and climatic variables. The most distinctive change between the two time periods was the higher relative abundance of planktic diatom species in top‐core assemblages of some lakes, but in a highly variable fashion across gradients of increased elevation and water depth.Main conclusionsLandscape palaeolimnological analyses of varied Ecuadorean Andean lakes demonstrate both environmental and spatial controls on diatom metacommunities. The multi‐faceted ecological control of the altitudinal gradient on both historic and contemporary diatom assemblages suggests species sorting and dispersal constraints operating at centennial time‐scale. Although a few individual lakes show substantive change between the 1850s and today, the majority of lakes do not, and the analysis suggests the resilience of lakes at a regional scale. We emphasize the potential of diatom palaeolimnological approaches in biogeography to test ecologically relevant hypotheses of the mechanisms driving recent limnological change in high‐elevation tropical lakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.