Abstract
This study presents a workflow for identifying and characterizing patients with Heart Failure (HF) and multimorbidity utilizing data from Electronic Health Records. Multimorbidity, the co-occurrence of two or more chronic conditions, poses a significant challenge on healthcare systems. Nonetheless, understanding of patients with multimorbidity, including the most common disease interactions, risk factors, and treatment responses, remains limited, particularly for complex and heterogeneous conditions like HF. We conducted a clustering analysis of 3745 HF patients using demographics, comorbidities, laboratory values, and drug prescriptions. Our analysis revealed four distinct clusters with significant differences in multimorbidity profiles showing differential prognostic implications regarding unplanned hospital admissions. These findings underscore the considerable disease heterogeneity within HF patients and emphasize the potential for improved characterization of patient subgroups for clinical risk stratification through the use of EHR data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.