Abstract
ABSTRACTMultitiered systems of support depend on screening technology to identify students at risk. The purpose of this study was to examine the use of a computer-adaptive test and latent class growth analysis (LCGA) to identify students at risk in reading with focus on the use of this methodology to characterize student performance in screening. Participants included 3,699 students in Grades 3–5. Three time points of administration (fall, winter, and spring) of the computer-adaptive reading measure were selected. LCGA results indicated 6–7 classes, depending on grade, informed by level and growth in student performance that significantly predicted failure on the statewide test administered at the end of the year. The lowest-performing classes had failure rates above 90% across all grades. The results indicate that identifying homogeneous groups of learners through LCGA may be valuable as an approach to determining students who need additional instruction. Practical implications and future directions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.