Abstract

Nonaqueous redox flow batteries (NARFBs) offer a promising solution for large-scale storage of renewable energy. However, crossover of redox active molecules between the two sides of the cell is a major factor limiting their development, as most selective separators are designed for deployment in water, rather than organic solvents. This report describes a systematic investigation of the crossover rates of redox active organic molecules through an anion exchange separator under RFB-relevant non-aqueous conditions (in acetonitrile/KPF6) using a combination of experimental and computational methods. A structurally diverse set of neutral and cationic molecules was selected, and their rates of crossover were determined experimentally with the organic solvent-compatible anion exchange separator Fumasep FAP-375-PP. The resulting data were then fit to various descriptors of molecular size, charge, and hydrophobicity (overall charge, solution diffusion coefficient, globularity, dynamic volume, dynamic surface area, clogP). This analysis resulted in multiple statistical models of crossover rates for this separator. These models were then used to predict tether groups that dramatically slow the crossover of small organic molecules in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.