Abstract
Gelatinases A and B, which are members of the matrix metalloproteinase (MMP) family, play essential roles in cancer development and metastasis, as they can break down basal membranes. Therefore, the determination and inhibition of gelatinases is essential for cancer treatment. Peptides that can specifically block each gelatinase may, therefore, be useful for cancer treatment. In this study, subtractive panning was carried out using a 12-mer peptide library to identify peptides that block gelatinase A activity (MMP-2), which is a key pharmacological target. Using this method, 17 unique peptide sequences were determined. MMP-2 inhibition by these peptides was evaluated through zymogram analyses, which revealed that four peptides inhibited MMP-2 activity by at least 65%. These four peptides were synthesized and used for in vitro wound healing using human umbilical vein endothelial cells, and two peptides, AOMP12 and AOMP29, were found to inhibit wound healing by 40%. These peptides are, thus, potential candidates for MMP-2 inhibition for cancer treatment. Furthermore, our findings suggest that our substractive biopanning screening method is a suitable strategy for identifying peptides that selectively inhibit MMP-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Turkish journal of biology = Turk biyoloji dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.