Abstract

The effect of proglacial groundwater systems on surface hydrology and ecology in cold regions often is neglected when assessing the ecohydrological implications of climate change. We present a novel approach in which we combined 2 temperature-tracing techniques to assess the spatial patterns and short-term temporal dynamics of groundwater–surface-water exchange in the proglacial zone of Skaftafellsjökull, a retreating glacier in southeastern Iceland. Our study focuses on localized groundwater discharge to a surface-water environment, where high temporal- and spatial-resolution mapping of sediment surface and subsurface temperatures (10–15 cm depth) were obtained by Fiber-Optic Distributed Temperature Sensing (FO-DTS). The FO-DTS survey identified temporally consistent locations of temperature anomalies at the sediment–water interface, indicating distinct zones of cooler groundwater upwelling. The high-resolution FO-DTS surveys were combined with calculations of 1-dimensional groundwater seepage fluxes based on 3 vertical sediment temperature profiles, covering depths of 10, 25, and 40 cm below the lake bed. The calculated groundwater seepage rates ranged between 1.02 to 6.10 m/d. We used the combined techniques successfully to identify substantial temporal and spatial heterogeneities in groundwater–surface exchange fluxes that have relevance for the ecohydrological functioning of the investigated system and its potential resilience to environmental change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.