Abstract

Runoff generation is a result of the interplay of a range of processes, the relative magnitudes of which vary, among other things, with climate, catchment properties, and catchment scale. The variability of runoff generation processes within a mountain catchment and the variability from event to event is one particularly intriguing aspect. A better understanding of these spatio-temporal patterns of runoff generation is critical for obtaining realistic model simulations of events, such as extreme floods, and of run-off behaviour associated with changes in environmental and land use conditions. Estimating runoff generation is very difficult as it involves a high degree of extrapolation. Difficulties in accurately assessing runoff in mountains have been highlighted by local-scale field experiments (e.g. Scherrer 1997), observations in experimental basins (e.g. Anderson et al. 1997; Kirnbauer and Haas 1998; Torres et al. 1998; Muller and Peschke 2000; Uchida et al. 2001), and modelling studies (e.g. Moore and Grayson 1991) that emphasize the spatially highly heterogeneous nature of runoff. Also, different runoff processes may dominate at different spatial scales (see e.g. Bloschl 1996; Uhlenbrook and Leibundgut 1997). Although it is possible to estimate runoff for yet unobserved situations with hydrological simulation models, the reliability of such estimates is notoriously poor, particularly when moving from the plot scale or small catchment scale to medium sized catchments (DFG 1995). There is still a gap between the understanding of runoff generation processes at the plot scale and process-based hydrological modelling at the catchment scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call