Abstract

Abstract In this paper we estimate an unknown space-time dependent force being exerted on the vibrating Euler–Bernoulli beam under different boundary supports, which is obtained with the help of measured boundary forces as additional conditions. A sequence of spatial boundary functions is derived, and all the boundary functions and the zero element constitute a linear space. A work boundary functional is coined in the linear space, of which the work is approximately preserved for each work boundary function. The linear system used to recover the unknown force with the work boundary functions as the bases is derived and the iterative algorithm is developed, which converges very fast at each time step. The accuracy and robustness of the boundary functional method (BFM) are confirmed by comparing the estimated forces under large noise with the exact forces. We also recover the unknown force on the damped vibrating Euler–Bernoulli beam equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call