Abstract

Two-dimensional (2D) materials composed of sp and sp(2) carbon atoms (e.g., graphyne and graphdiyne) show many interesting properties. These materials can be constructed through alkyne homocoupling; however, the occurrence of various side reactions increases the difficulty of their synthesis and structural characterization. Here, we investigate the thermodynamic properties and vibrational spectra of several aryl-alkynes. Both homocoupling and side reactions are found to occur spontaneously at room temperature in terms of thermodynamics. The calculated Raman spectra of the homocoupling products show regular changes with increasing polymerization degree. By rationalizing the vibrational modes of various oligomers, the Raman spectrum of a 2D sp-sp(2) carbon sheet is predicted; it exhibits three sharp peaks at 2241, 1560, and 1444 cm(-1). Although the target and byproducts display similar vibrational modes, a combination of Raman and infrared spectroscopies can be used to differentiate them. The theoretical results are then used to analyze the structure of a synthesized sample and provide useful information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.