Abstract

This study aimed to find suitable source domain data in cross-domain transfer learning to extract robust image features. Then, a model was built to preoperatively distinguish lung granulomatous nodules (LGNs) from lung adenocarcinoma (LAC) in solitary pulmonary solid nodules (SPSNs). Data from 841 patients with SPSNs from five centres were collected retrospectively. First, adaptive cross-domain transfer learning was used to construct transfer learning signatures (TLS) under different source domain data and conduct a comparative analysis. The Wasserstein distance was used to assess the similarity between the source domain and target domain data in cross-domain transfer learning. Second, a cross-domain transfer learning radiomics model (TLRM) combining the best performing TLS, clinical factors and subjective CT findings was constructed. Finally, the performance of the model was validated through multicentre validation cohorts. Relative to other source domain data, TLS based on lung whole slide images as source domain data (TLS-LW) had the best performance in all validation cohorts (AUC range: 0.8228-0.8984). Meanwhile, the Wasserstein distance of TLS-LW was 1.7108, which was minimal. Finally, TLS-LW, age, spiculated sign and lobulated shape were used to build the TLRM. In all validation cohorts, The AUC ranges were 0.9074-0.9442. Compared with other models, decision curve analysis and integrated discrimination improvement showed that TLRM had better performance. The TLRM could assist physicians in preoperatively differentiating LGN from LAC in SPSNs. Furthermore, compared with other images, cross-domain transfer learning can extract robust image features when using lung whole slide images as source domain data and has a better effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call