Abstract

We investigate the modification of electronic properties of single cobalt phthalocyanine (CoPc) molecule by an extra Co atom co-adsorbed on Au (111) surface using scanning tunneling microscopy (STM), joint with density functional theory (DFT) calculations. By manipulating CoPc molecules using the STM tip to contact individually adsorbed Co atom, two types of relatively stable complexes can be formed, denoted as CoPc-Co(I) and CoPc-Co(II). In CoPc-Co(I), the Co atom is at an intramolecular site close to aza-N atom of CoPc, which induces significant modifications of the electronic states of CoPc, such as energy shifts and splitting of nonlocal molecular orbitals. However, in CoPc-Co(II) where the Co atom is underneath a benzene lobe of CoPc, it only slightly modifies the electronic states of CoPc, and mainly local characteristics of specific molecular orbitals are affected, even though CoPc-Co(II) is more stable than CoPc-Co(I). Our DFT calculations give consistent results with the experiments, and related analyses based on the molecular orbital theory reveal mechanism behind the experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.