Abstract
Single necessary (but not sufficient) conditions are critically important for business theory and practice. Without them, the outcomes cannot occur, and other conditions cannot compensate for this absence. Currently two analytical approaches are available for identifying single necessary conditions: Necessary Condition Analysis (NCA), which was recently developed, and fuzzy-set qualitative comparative analysis (fsQCA), which is a more established approach. FsQCA normally focuses on sufficient but not necessary configurations, but can also identify necessary but not sufficient conditions. This study uses NCA to analyze two examples of empirical datasets published in the Journal of Business Research that use fsQCA to identify single necessary conditions. A comparison of the results of NCA and fsQCA shows that NCA can identify more necessary conditions than fsQCA and can specify the level of the condition that is required for a given level of the outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.