Abstract

Abstract I propose to identify an SVAR, up to shock ordering, using the autocovariance structure of the squared innovations implied by an arbitrary stochastic process for the shock variances. These higher moments are available without parametric assumptions on the variance process. In contrast, previous approaches exploiting heteroskedasticity rely on the path of innovation covariances, which can only be recovered from the data under specific parametric assumptions on the variance process. The conditions for identification are testable. I compare the identification scheme to existing approaches in simulations and provide guidance for estimation and inference. I use the methodology to estimate fiscal multipliers peaking at 0.86 for tax cuts and 0.75 for government spending. I find that tax shocks explain more variation in output at longer horizons. The empirical implications of my estimates are more consistent with theory and the narrative record than those based on some leading approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.