Abstract
Let G be a connected simple graph. A subset S of V(G) is a dominating set of G if for every v∈V(G)\S, there exists x∈S such that xv∈E(G). An Identifying code of a graph G is a dominating set C⊆V(G) such that for every v∈V(G),N_G [v]∩C is distinct. An identifying code of a graph G is an identifying secure dominating set if for each u∈V(G)\C, there exists v∈C such that uv∈E(G) and the set (C\{v})∪{u} is a dominating set of G. The minimum cardinality of an identifying secure dominating set of G, denoted by γ_s^ID, is called the identifying secure domination number of G. In this paper, the researchers initiate the study of the concept and give some important results. In particular, the researchers show some properties of the identifying secure dominating sets in join and corona of two graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal For Multidisciplinary Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.