Abstract
This paper revisits the question of parameter identification when a linear continuous time model is sampled only at equispaced points in time. Following the framework and assumptions of Phillips (1973), we consider models characterized by first-order, linear systems of stochastic differential equations and use a priori restrictions on the model parameters as identifying restrictions. A practical rank condition is derived to test whether any particular collection of at least floor(n/2) general linear restrictions on the parameter matrix is sufficient for identification. We then consider extensions to incorporate prior restrictions on the covariance matrix of the disturbances, to identify the covariance matrix itself, and to address identification in models with cointegration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.