Abstract
Maize is the most important staple crop worldwide. Many of its agronomic traits present with a high level of heterosis. Combining ability was proposed to exploit the rule of heterosis, and general combining ability (GCA) is a crucial measure of parental performance. In this study, a recombinant inbred line population was used to construct testcross populations by crossing with four testers based on North Carolina design II. Six yield-relevant traits were investigated as phenotypic data. GCA effects were estimated for three scenarios based on the heterotic group and the number of tester lines. These estimates were then used to identify quantitative trait loci (QTL) and dissect genetic basis of GCA. A higher heritability of GCA was obtained for each trait. Thus, testing in early generation of breeding may effectively select candidate lines with relatively superior GCA performance. The GCA QTL detected in each scenario was slightly different according to the linkage mapping. Most of the GCA-relevant loci were simultaneously detected in all three datasets. Therefore, the genetic basis of GCA was nearly constant although discrepant inbred lines were appointed as testers. In addition, favorable alleles corresponding to GCA could be pyramided via marker-assisted selection and made available for maize hybrid breeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.