Abstract

Grain filling is an important trait of rice that affects the yield of grain-oriented crop species with sink capacity-related traits. Here, we used a doubled haploid (DH) population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica) to investigate quantitative traits loci (QTLs) controlling grain filling in rice employing the Kompetitive allele-specific PCR (KASP) markers. The mapping population was grown under early-, normal-, and late-cultivation periods. The phenotypic evaluation revealed that spikelet number per panicle positively correlated with the grain-filling ratio under early cultivation conditions. Notably, three significant QTLs associated with the control of grain filling, qFG3, qFG5-1, and qFG5-2, were identified. Genes harbored by these QTLs are linked with diverse biological processes and molecular functions. Likewise, genes associated with abiotic stress response and transcription factor activity and redox homeostasis were detected. Genes such as MYB, WRKY60, and OsSh1 encoding transcription factor, β-catenin, and the tubulin FtsZ, as well as those encoding cytochrome P450, would play a forefront role in controlling grain filling under early cultivation conditions. Our results suggest that qFG3-related genes could mediate the transition between grain filling and abiotic stress response mechanisms. Fine-mapping these QTLs would help identify putative candidate genes for downstream functional characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call