Abstract

BackgroundSevere metabolic acidosis and acute kidney injury are major causes of mortality in children with severe malaria but are often underdiagnosed in low resource settings.MethodsA retrospective analysis of the ‘Artesunate versus quinine in the treatment of severe falciparum malaria in African children’ (AQUAMAT) trial was conducted to identify clinical features of severe metabolic acidosis and uraemia in 5425 children from nine African countries. Separate models were fitted for uraemia and severe metabolic acidosis. Separate univariable and multivariable logistic regression were performed to identify prognostic factors for severe metabolic acidosis and uraemia. Both analyses adjusted for the trial arm. A forward selection approach was used for model building of the logistic models and a threshold of 5% statistical significance was used for inclusion of variables into the final logistic model. Model performance was assessed through calibration, discrimination, and internal validation with bootstrapping.ResultsThere were 2296 children identified with severe metabolic acidosis and 1110 with uraemia. Prognostic features of severe metabolic acidosis among them were deep breathing (OR: 3.94, CI 2.51–6.2), hypoglycaemia (OR: 5.16, CI 2.74–9.75), coma (OR: 1.72 CI 1.17–2.51), respiratory distress (OR: 1.46, CI 1.02–2.1) and prostration (OR: 1.88 CI 1.35–2.59). Features associated with uraemia were coma (3.18, CI 2.36–4.27), Prostration (OR: 1.78 CI 1.37–2.30), decompensated shock (OR: 1.89, CI 1.31–2.74), black water fever (CI 1.58. CI 1.09–2.27), jaundice (OR: 3.46 CI 2.21–5.43), severe anaemia (OR: 1.77, CI 1.36–2.29) and hypoglycaemia (OR: 2.77, CI 2.22–3.46)ConclusionClinical and laboratory parameters representing contributors and consequences of severe metabolic acidosis and uraemia were independently associated with these outcomes. The model can be useful for identifying patients at high risk of these complications where laboratory assessments are not routinely available.

Highlights

  • Severe metabolic acidosis and acute kidney injury are major causes of mortality in children with severe malaria but are often underdiagnosed in low resource settings

  • Prognostic factors of metabolic acidosis In this study, 50.1% (2,296) of children presented with severe metabolic acidosis [base excess less than 8 mmol/l] and there was no significant difference between males (48.9%) and females (51.3%)

  • Survivors were 81% were less likely to have severe metabolic acidosis compared to those who died (OR = 0.19, 95% Confidence Interval (CI) 0.15–0.24, p-value: < 0.001)

Read more

Summary

Introduction

Severe metabolic acidosis and acute kidney injury are major causes of mortality in children with severe malaria but are often underdiagnosed in low resource settings. Metabolic acidosis and acute kidney injury are two of three (in addition to coma) complications of malaria most predictive for a fatal outcome of severe malaria [2, 4,5,6,7,8,9,10]. Up to 80% of severe malaria patients with acute kidney injury (AKI) are non-oliguric [11,12,13]. Identifying these children with a high risk of having AKI could be beneficial in resource-poor settings

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.