Abstract
The $$k$$ -Nearest Neighbour classifier is widely used and popular due to its inherent simplicity and the avoidance of model assumptions. Although the approach has been shown to yield a near-optimal classification performance for an infinite number of samples, a selection of the most decisive data points can improve the classification accuracy considerably in real settings with a limited number of samples. At the same time, a selection of a subset of representative training samples reduces the required amount of storage and computational resources. We devised a new approach that selects a representative training subset on the basis of an evolutionary optimization procedure. This method chooses those training samples that have a strong influence on the correct prediction of other training samples, in particular those that have uncertain labels. The performance of the algorithm is evaluated on different data sets. Additionally, we provide graphical examples of the selection procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.