Abstract

Microbial biofilms play a critical role in environmental biotechnology and associated applications. Biofilm production can be enhanced by inhibiting the function of proteins that negatively regulate their formation. With this objective, an in silico approach was adopted to identify competitive inhibitors of eight biofilm-antagonistic proteins, namely AbrB and SinR (from Bacillus subtilis) and AmrZ, PDE (EAL), PslG, RetS, ShrA and TpbA (from Pseudomonas aeruginosa). Fifteen inhibitors that structurally resembled the natural ligand of each protein were shortlisted using ligand-based and structure-based virtual screening. The top four inhibitors obtained from molecular docking using Autodock Vina were further docked using SwissDock and DOCK 6.9 to obtain a consensus hit for each protein based on different scoring functions. Further analysis of the protein-ligand complexes revealed that these top inhibitors formed significant non-covalent interactions with their respective protein binding sites. The eight protein-ligand complexes were then subjected to molecular dynamics simulations for 30ns using GROMACS. RMSD and radius of gyration values of 0.1-0.4nm and 1.0-3.5nm, respectively, along with hydrogen bond formation throughout the trajectory indicated that all the complexes remained stable, compact and intact during the simulation period. Binding energy values between -20 and -77kJ/mol obtained from MM-PBSA calculations further confirmed the high affinities of the eight inhibitors for their respective receptors. The outcome of this study holds great promise to enhance biofilms that are central to biotechnological processes associated with microbial electrochemical technologies, wastewater treatment, bioremediation and the industrial production of value-added products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.