Abstract

Systems level barriers to heart failure (HF) care limit access to HF advanced therapies (heart transplantation, left ventricular assist devices). There is a need for automated systems that can help clinicians ensure patients with HF are evaluated for HF advanced therapies at the appropriate time to optimize outcomes. We performed a retrospective study using the REVIVAL (Registry Evaluation of Vital Information for VADs in Ambulatory Life) and INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) registries. We developed a novel machine learning model based on principles of tropical geometry and fuzzy logic that can accommodate clinician knowledge and provide recommendations regarding need for advanced therapies evaluations that are accessible to end-users. The model was trained and validated using data from 4,694 HF patients. When initiated with clinical knowledge from HF and transplant cardiologists, the model achieved an F1 score of 43.8%, recall of 51.1%, and precision of 46.9%. The model achieved comparable performance compared with other commonly used machine learning models. Importantly, our model was 1 of only 3 models providing transparent and parsimonious clinical rules, significantly outperforming the other 2 models. Eleven clinical rules were extracted from the model which can be leveraged in clinical practice. A machine learning model capable of accepting clinical knowledge and making accessible recommendations was trained to identify patients with advanced HF. While this model was developed for HF care, the methodology has multiple potential uses in other important clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.