Abstract

The rapid and efficient detection of illicit drug cultivation, such as that of Cannabis sativa, is important in reducing consumption. The objective of this study was to identify potential sites of illicit C. sativa plantations located in the semi-arid, southern part of Pernambuco State, Brazil. The study was conducted using an object-based image analysis (OBIA) of Système Pour l'Observation de la Terre high-resolution geometric (SPOT-5 HRG) images (overpass: 31 May, 2007). OBIA considers the target's contextual and geometrical attributes to overcome the difficulties inherent in detecting illicit crops associated with the grower's strategies to conceal their fields and optimizes the spectral information extracted to generate land-cover maps. The capabilities of the SPOT-5 near-infrared and shortwave infrared bands to discriminate herbaceous vegetation with high water content, and employment of the support vector machine classifier, contributed to accomplishing this task. Image classification included multiresolution segmentation with an algorithm available in the eCognition Developer software package. In addition to a SPOT-5 HRG multispectral image with 10 m spatial resolution and a panchromatic image with 2.5 m spatial resolution, first-order indices such as the normalized difference vegetation index and ancillary data including land-cover classes, anthropogenic areas, slope, and distance to water sources were also employed in the OBIA. The classification of segments (objects) related to illegal cultivation employed fuzzy logic and fixed-threshold membership functions to describe the following spectral, geometrical, and contextual properties of targets: vegetation density, topography, neighbourhood, and presence of water supplies for irrigation. The results of OBIA were verified from a weight of evidence analysis. Among 15 previously known C. sativa sites identified during police operations conducted on 5–17 June 2007, eight sites were classified as maximum-alert areas (total area of 22.54 km2 within a total area of object-oriented image classification of ∼1800 km2). The approach proposed in this study is feasible for reducing the area to be searched for illicit cannabis cultivation in semi-arid regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.