Abstract

BackgroundTargeted interventions for suicide prevention rely on adequate identification of groups at elevated risk. Several risk factors for suicide are known, but little is known about the interactions between risk factors. Interactions between risk factors may aid in detecting more specific sub-populations at higher risk. MethodsHere, we use a novel machine learning heuristic to detect sub-populations at ultra high-risk for suicide based on interacting risk factors. The data-driven and hypothesis-free model is applied to investigate data covering the entire population of the Netherlands. FindingsWe found three sub-populations with extremely high suicide rates (i.e. >50 suicides per 100,000 person years, compared to 12/100,000 in the general population), namely: (1) people on unfit for work benefits that were never married, (2) males on unfit for work benefits, and (3) those aged 55–69 who live alone, were never married and have a relatively low household income. Additionally, we found two sub-populations where the rate was higher than expected based on individual risk factors alone: widowed males, and people aged 25–39 with a low level of education. InterpretationOur model is effective at finding ultra-high risk groups which can be targeted using sub-population level interventions. Additionally, it is effective at identifying high-risk groups that would not be considered risk groups based on conventional risk factor analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.