Abstract
AbstractMost regional landslide warning systems utilize empirically derived rainfall thresholds that are difficult to improve without recalibration to additional landslide events. To address this limitation, we explored the use of synthetic rainfall to generate thousands of possible storm patterns and coupled them with a physics‐based hydrology and slope stability model for various antecedent soil saturation scenarios to analyze pore water pressure and factor of safety metrics. We used these metrics to generate two‐tiered alert thresholds that can be employed to assess shallow landslide potential for any given combination of storm and antecedent wetness. When applied to the San Francisco Bay region (CA, USA), the results are consistent with events that caused widespread landsliding. Our deterministic modeling approach, which accounts for plausible ranges in soil hydraulic and mechanical properties, can inform the development of the next generation of warning systems for rainfall‐induced landsliding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.