Abstract

Abstract. One year of meteorological and atmospheric radon observations in a topographically complex subalpine basin are used to identify persistent temperature inversion (PTI) events. PTI events play a key role in public health due to the accumulation of urban pollutants that they cause. Two techniques are compared: a new radon-based method (RBM), based on single-height 222Rn measurements from a single centrally located station, and an existing pseudo-vertical temperature gradient method (TGM) based on observations from eight weather stations around the subalpine basin. The RBM identified six PTI events (four in winter, two in autumn), a subset of the 17 events identified by the TGM. The RBM was more consistent in its identification of PTI events for all seasons and more selective of persistent strongly stable conditions. The comparatively poor performance of the TGM was attributed to seasonal inconsistencies in the validity of the method's key assumptions (influenced by mesoscale processes, such as local drainage flows, nocturnal jets, and intermittent turbulence influence) and a lack of snow cover in the basin for the 2016–2017 winter period. Corresponding meteorological quantities for RBM PTI events (constituting 27 % of the autumn–winter cold season) were well characterized. PTI wind speeds in the basin were consistently low over the whole diurnal cycle (typically 0.2–0.6 m s−1). Suitability of the two techniques for air quality assessment was compared using hourly PM10 observations. Peak PM10 concentrations for winter (autumn) PTI events were underestimated by 13 µg m−3 (11 µg m−3) by the TGM compared with the RBM. Only the RBM indicated that nocturnal hourly mean PM10 values in winter PTI events can exceed 100 µg m−3, the upper threshold of low-level short-term PM10 exposure according to World Health Organization guidelines. The efficacy, simplicity, and cost effectiveness of the RBM for identifying PTI events has the potential to make it a powerful tool for urban air quality management in complex terrain regions, for which it adds an additional dimension to contemporary atmospheric stability classification tools. Furthermore, the long-term consistency of the radon source function will enable the RBM to be used in the same way in future studies, enabling the relative magnitude of PTI events to be gauged, which is expected to assist with the assessment of public health risks.

Highlights

  • Urban air pollution is one of the main environmental health risks in Europe (EEA, 2017; World Health Organization (WHO), 2014)

  • Peak PM10 concentrations for winter persistent temperature inversion (PTI) events were underestimated by 13 μg m−3 (11 μg m−3) by the temperature gradient method (TGM) compared with the radon-based method (RBM)

  • The RBM indicated that nocturnal hourly mean PM10 values in winter PTI events can exceed 100 μg m−3, the upper threshold of low-level short-term PM10 exposure according to World Health Organization guidelines

Read more

Summary

Introduction

Urban air pollution is one of the main environmental health risks in Europe (EEA, 2017; WHO, 2014). An air pollution event is considered to have occurred when the concentration of one or more of the criteria pollutants exceeds the guideline value for longer than the specified duration threshold. Such pollution events can be of short duration (1–12 h, day or night) or, under certain conditions, they can persist for days to weeks

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call