Abstract

Most existing approaches for community detection require complete information of the graph in a specific scale, which is impractical for many social networks. We propose a novel algorithm that does not embrace the universal approach but instead of trying to focus on local social ties and modeling multi-scales of social interactions occurring in those networks. Our method for the first time optimizes the topological entropy of a network and uncovers communities through a novel dynamic system converging to a local minimum by simply updating the membership vector with very low computational complexity. It naturally supports overlapping communities through associating each node with a membership vector which describes node's involvement in each community. This way, in addition to uncover overlapping communities, we can also describe different multi-scale partitions by tuning the characteristic size of modules from the optimal partition. Because of the high efficiency and accuracy of the algorithm, it is feasible to be used for the accurate detection of community structure in real networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.