Abstract

Abstract When monitoring industrial processes, a Statistical Process Control tool, such as a multivariate Hotelling T 2 chart is frequently used to evaluate multiple quality characteristics. However, research into the use of T 2 charts for survey fieldwork–essentially a production process in which data sets collected by means of interviews are produced–has been scant to date. In this study, using data from the eighth round of the European Social Survey in Belgium, we present a procedure for simultaneously monitoring six response quality indicators and identifying outliers: interviews with anomalous results. The procedure integrates Kernel Density Estimation (KDE) with a T 2 chart, so that historical “in-control” data or reference to the assumption of a parametric distribution of the indicators is not required. In total, 75 outliers (4.25%) are iteratively removed, resulting in an in-control data set containing 1,691 interviews. The outliers are mainly characterized by having longer sequences of identical answers, a greater number of extreme answers, and against expectation, a lower item nonresponse rate. The procedure is validated by means of ten-fold cross-validation and comparison with the minimum covariance determinant algorithm as the criterion. By providing a method of obtaining in-control data, the present findings go some way toward a way to monitor response quality, identify problems, and provide rapid feedbacks during survey fieldwork.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.