Abstract

Identification of solvents for dissolving polymer dielectrics and organic semiconductors is necessary for the fabrication of solution-processed organic field effect transistors (OFETs). In addition to solubility and printability of a solvent, orthogonality is particularly important when forming multilayer structure from solutions. Currently, the process of finding orthogonal solvents is empirical, and based on trial-and-error experimental methods. In this paper, we present a methodology for identifying orthogonal solvents for solution-processed organic devices. We study the accuracy of Hildebrand and Hansen solubility theories for building solubility boundaries for organic semiconductor (Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and polymer dielectrics (Poly(methyl methacrylate) (PMMA), Polystyrene (PS)). The Hansen solubility sphere for the organic semiconductor and polymer gate dielectrics are analyzed to identify solvents that dissolve PMMA and PS, but are orthogonal to PBTTT. Top gate/bottom contact PBTTT based OFETs are fabricated with PMMA gate dielectric processed with solvents that are orthogonal and non-orthogonal to PBTTT. The non-orthogonal solvents swell the semiconductor layer and increase their surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.