Abstract
The thermoelectric properties of bismuth telluride thin film (BTTF) was tuned by inducing internal strain through a combination of combinatorial gradient thermal annealing (COGTAN) and machine learning. BTTFs were synthesized via magnetron sputter coating and then treated by COGTAN. The crystal structure and thermoelectric properties, namely Seebeck coefficient and thermal conductivity, of the treated samples were analyzed via micropoint X-ray diffraction and scanning thermal probe microimaging, respectively. The obtained combinatorial data reveals the correlation between internal strain and the thermoelectric properties. The Seebeck coefficient of BTTF exhibits largest sensitivity, where the value ranges from 7.9 to -108 μV/K. To further explore the possibility to enhance Seebeck coefficient, the combinatorial data were subjected to machine learning. The trained model predicts that optimal strains of 3-4% and 1-2% along the a- and c-axis, respectively, significantly improve Seebeck coefficient. The technique demonstrated herein can be used to predict and enhance the performance of thermoelectric materials by inducing internal strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.