Abstract

Extensive, in situ, reflectance spectra (i.e., 252 bands) were acquired for the dominant botanical and substrate classes within Prentiss Bay and Horseshoe Bay, Lake Huron. These spectral radiance measurements were transformed into relative percent reflectance and then resampled to emulate the band configurations of the airborne, hyperspectral imagery that was also acquired of the sites. Second-derivative analysis was applied to these transformed spectra in order to identify which spectral bands were the most botanically explanative (i.e., optimal) for the differentiation of coastal wetland vegetation in the Great Lakes. This research identified 8 optimal bands in the visible–NIR wavelength region (in order of decreasing importance: 685.5, 731.5, 939.9, 514.9, 812.3, 835.5, 823.9 and 560.1 nm) that appear to contain the majority of the coastal wetland information content of the full spectral resolution, 48-band, hyperspectral signatures. A reduction of band number without significant information loss is important because it makes it practical to utilize small pixels without fear of sacrificing the ability to differentiate the botanical communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.