Abstract

Low-cost sensors are often co-located with reference instruments to assess their performance and establish calibration equations, but limited discussion has focused on whether the duration of this calibration period can be optimized. We placed a multipollutant monitor that contained sensors that measure particulate matter smaller than 2.5 μm (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for one year. We developed calibration equations using randomly selected co-location subsets spanning 1 to 180 consecutive days out of the 1-year period and compared the potential root mean square errors (RMSE) and Pearson correlation coefficients (r). The co-located calibration period required to obtain consistent results varied by sensor type, and several factors increased the co-location duration required for accurate calibration, including the response of a sensor to environmental factors, such as temperature or relative humidity (RH), or cross-sensitivities to other pollutants. Using measurements from Baltimore, MD, where a broad range of environmental conditions may be observed over a given year, we found diminishing improvements in the median RMSE for calibration periods longer than about six weeks for all the sensors. The best performing calibration periods were the ones that contained a range of environmental conditions similar to those encountered during the evaluation period (i.e., all other days of the year not used in the calibration). With optimal, varying conditions it was possible to obtain an accurate calibration in as little as one week for all sensors, suggesting that co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of the desired measurement setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call