Abstract
On certain kinds of cloudy days, many forested ecosystems exhibit enhanced carbon uptake and water-use efficiency-the cloudy-day forest flux anomaly. Using ensemble methods to analyze eddy-covariance fluxes, we have diagnosed net ecosystem exchange (NEE) and water-use efficiency (WUE) of a temperate broadleaf forest and a tropical evergreen forest as they responded to natural fluctuating-light regimes. Here we apply average NEE and evapotranspiration solutions of a first-order dynamic model to describe the observed whole-canopy sensitivity to periodic light. On partly-cloudy days, maximum overall NEE enhancements over conventional steady-state equilibrium estimates are ≈ 25% for a midlatitude deciduous forest and ≈ 15% for a tropical evergreen forest. This finding supports our conclusion that in many cases the cloudy-day anomaly is a consequence of a dynamic response by the trees responding to fluctuating-light regimes occasioned by passing cumulus clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.