Abstract

The escalating climate and wildfire crises have generated worldwide interest in using proactive forest management (e.g. forest thinning, prescribed fire, cultural burning) to mitigate the risk of wildfire-caused carbon loss in forests. To estimate the risk of wildfire-caused carbon loss in western United States (US) conifer forests, we used a generalizable framework to evaluate interactions among wildfire hazard and carbon exposure and vulnerability. By evaluating where high social adaptive capacity for proactive forest management overlaps with carbon most vulnerable to wildfire-caused carbon loss, we identified opportunity hot spots for reducing the risk of wildfire-caused carbon loss. We found that relative to their total forest area, California, New Mexico, and Arizona contained the greatest proportion of carbon highly vulnerable to wildfire-caused loss. We also observed widespread opportunities in the western US for using proactive forest management to reduce the risk of wildfire-caused carbon loss, with many areas containing opportunities for simultaneously mitigating the greatest risk from wildfire to carbon and human communities. Finally, we highlighted collaborative and equitable processes that provide pathways to achieving timely climate- and wildfire-mitigation goals at opportunity hot spots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.