Abstract

In online social networks, there are some influential opinion leader nodes who can be used to accelerate the spread of positive information and suppress the diffusion of rumors. If these opinion leaders can be identified timely and correctly, there will be contributing to guide the popular opinions. The closeness is introduced for mapping the relationship between the nodes according to the different interaction types in online social network. In order to measure the impact of the information transmission between non-adjacent nodes in online social networks, a closeness evaluating algorithm of the adjacent nodes and the non-adjacent nodes is given based on the relational features between users. By using the algorithm, the closeness between the adjacent nodes and the non-adjacent nodes can obtained depending on the interaction time of nodes and the delay of their hops. Furthermore, a more accurate and efficient betweenness centrality scheme based on the optimized algorithm with the degree of closeness and the corresponding updating strategy. The opinion leader nodes should be identified more accurately and efficiently under the improved algorithm because the considering of closeness between nodes in the network. Finally, the maximum spreading experiment is done for comparing the proposed method with other existing identifying opinion leader selecting schemes based on the Independent Cascade Model. The result of experiment shows the effectiveness and practicality of the evaluating algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.