Abstract
Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. In this article, an approach is presented for online traffic classification relying on the observation of the first n packets of a transmission control protocol (TCP) connection. Its key idea is to utilize the properties of the observed first ten packets of a TCP connection and Bayesian network method to build a classifier. This classifier can classify TCP flows dynamically as packets pass through it by deciding whether a TCP flow belongs to a given application. The experimental results show that the proposed approach performs well in online Internet traffic classification and that it is superior to naïve Bayesian method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of China Universities of Posts and Telecommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.