Abstract

Old-growth forests provide many ecosystem services and benefits. However, they are becoming increasingly rare and thus are an urgent priority for conservation. Accurately mapping old-growth forests is a critical step in this process. Here, we used LiDAR, an improved individual tree crown delineation algorithm for broadleaved forests, Gaussian mixture modelling, and a rule-based classification key to map the extent and location of old-growth forests across a topographically and ecologically complex landscape of 337,548 ha in southeastern Australia. We found that variation in old growth extent was largely driven by the old growth definition, which is a human construct, rather than by uncertainty in the technical aspect of the work. Current regulations define a stand as old growth if it was recruited prior to 1900 (i.e., >120 years old) and is undisturbed (i.e., <10% regrowth canopy cover and no visible disturbance traces). Only 2.7% (95% confidence intervals ranging from 1.4 to 4.9%) of the forests in the study landscape met these criteria. However, this definition is overly restrictive as it leaves many multi-aged stands with ecologically mature elements (e.g., one or more legacy trees amid regrowth) unprotected. Removing the regrowth filter, an indicator of past disturbances, increased the proportion of old-growth forests from 2.7% to 15% of the landscape. Our analyses also revealed that 60% of giant trees (>250 cm in diameter at breast height) were located within 50 m of cool temperate rainforests and cool temperate mixed forests (i.e., streamlines). We discuss the implication of our findings for the conservation and management of high-conservation-value forests in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.