Abstract

There are many approaches by which the heat exchanger can be modeled depending on how much information is available to start with. Grey-box model represents one of these approaches which is considered in the present study to modeling the unsteady operation heat exchanger. The available measurements of an unidentified heat exchanger integrated with a process involving oil circulation were statistically analyzed to extract the information that could aid in its identification. The proposed heat exchanger system included a hot oil stream coming from the thermal unit process and cooled by a cold-water circuit. The objective of this study is to develop a grey box model for the unspecified heat exchanger with a suitable nonlinear state-space structure and solved numerically using MATLAB-19 software and engineering equation solver (EES). Suitable parameters included oil and water inventories, heat addition, and conductance divisor factor are chosen to fully identify the heat exchanger from measured temperatures and flow rates. The parameters used to identify the oil process included the oil mass inventory within the process and the quantity of heat added. While for the heat exchanger; oil, water, and solid thermal masses were determined along with a conductance divisor to close its model. The results revealed that, comparing the model output with the measured data was satisfactory. The effect of 10% increment in the oil process heat as external excitation on a heat exchanger can only be controlled by water and oil flow rates and any fluctuation in inlet water temperature is insignificant and considered as a noise disturbance. An increment of 19% in the oil flowrate with unchanged water flowrate resulted in an increase in oil outlet temperature by about 4%. applying a noise of about ±10% on inlet water temperature to the system resulted in insignificant effects on the oil temperatures, and therefore it could be considered as uniform temperature. An effective control system to manage the heat exchanger and therefore the process can be designed according to the predictions of changing the water and oil flow rate responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call