Abstract

Background: Predicting the three-dimensional structure of globular proteins from their amino acid sequence has reached a fair accuracy, but predicting the structure of membrane proteins, especially loop regions, is still a difficult task in structural bioinformatics. The difficulty in predicting membrane loops is due to various factors like length variation, position, flexibility, and they are easily prone to mutation. Objective: In the present work, we address the problem of identifying and ranking near-native loops from a set of decoys generated by Monte-Carlo simulations. Methods: We systematically analyzed native and generated non-native decoys to develop a scoring function. The scoring function uses four important stabilizing energy terms from three popular force fields, such as FOLDX, OPLS, and AMBER, to identify and rank near-native membrane loops. Results: The results reveal better discrimination of native and non-natives and perform poor prediction in binary classifying native and near-native defined based on Root Mean Square Deviation (RMSD), Global Distance Test (GDT), and Template Modeling (TM) score, respectively. Conclusions: From our observations, we conclude that the important energy features described here may help to improve the loop prediction when the membrane protein database size increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.