Abstract

We preprocess the raw nuclear magnetic resonance (NMR) spectrum and extract key features by using two different methodologies, called equidistant sampling and peak sampling for subsequent substructure pattern recognition. We also provide a strategy to address the imbalance issue frequently encountered in statistical modeling of NMR data set and establish two conventional support vector machine (SVM) and K-nearest neighbor (KNN) models to assess the capability of two feature selections, respectively. Our results in this study show that the models using the selected features of peak sampling outperform those using equidistant sampling. Then we build the recurrent neural network (RNN) model trained by data collected from peak sampling. Furthermore, we illustrate the easier optimization of hyperparameters and the better generalization ability of the RNN deep learning model by detailed comparison with traditional machine learning SVM and KNN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.