Abstract

Simple SummaryWith increasing human populations and the need for ecosystem services to work in synergy with the production of specialty crops, the maintenance of biodiversity is becoming increasingly important. The aims of this study were to review the current literature employing molecular analysis to reveal the roles of species in providing biological control in agricultural systems. Decrypting the trophic networks between biological control agents and agricultural pests is essential to build eco-friendly strategies that promote the natural management of pests before any mediations, such as chemical control strategies, are required. It was found, during the review process, that our understanding of biological control communities is lacking in many agricultural systems, including common fruit and vegetable production, both in terms of what species are doing for crop production, and how various environmental challenges (i.e., land-use and habitat management concepts, such as wildflower borders) influence species interactions and the delivery of biological control services. New techniques harvesting the power of DNA to reveal species’ roles in specialty crops are an avenue forward to help integrate natural pest management into our standard operating procedures.Biodiversity is an essential attribute of sustainable agroecosystems. Diverse arthropod communities deliver multiple ecosystem services, such as biological control, which are the core of integrated pest management programs. The molecular analysis of arthropod diets has emerged as a new tool to monitor and help predict the outcomes of management on the functioning of arthropod communities. Here, we briefly review the recent molecular analysis of predators and parasitoids in agricultural environments. We focus on the developments of molecular gut content analysis (MGCA) implemented to unravel the function of community members, and their roles in biological control. We examine the agricultural systems in which this tool has been applied, and at what ecological scales. Additionally, we review the use of MGCA to uncover vertebrate roles in pest management, which commonly receives less attention. Applying MGCA to understand agricultural food webs is likely to provide an indicator of how management strategies either improve food web properties (i.e., enhanced biological control), or adversely impact them.

Highlights

  • Biological control, or pest control by living organisms, is a central component of integrated pest management [1]

  • Many recent molecular gut content analysis (MGCA) studies in agronomic crops have sought to understand the role of generalist arthropod predators, which are abundant in agroecosystems

  • The polymerase chain reactions (PCR)-based gut content analysis used to examine stink bug predation revealed that a diversity of arthropod predators from adjoining cotton–soybean fields tested positive for stink bug DNA [21]

Read more

Summary

Introduction

Biological control, or pest control by living organisms, is a central component of integrated pest management [1]. In the US alone, biological control services are valued in the billions of dollars [2]). A body of research has established that promoting the diversity of biocontrol agents significantly contributes to crop production around the world [3,4,5]. Maintaining species diversity within agroecosystems is essential for sustainability. In order to preserve production, we must advance our current integration of biodiversity into common agricultural practice [3]. In order to better understand the outcomes of biodiversity, the molecular analysis of trophic interactions is a tool that can be used to elucidate species’ ecological roles and resource use in agroecosystems

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call